Wyślij wiadomość
QINGDAO ENNENG MOTOR CO.,LTD.
produkty
produkty
Dom > produkty > PMSM do montażu powierzchniowego > Sterowanie bezczujnikowe Silnik PMSM o mocy 8 kW i mocy 15 kW Silnik z magnesami trwałymi o dużej mocy 10 kW

Sterowanie bezczujnikowe Silnik PMSM o mocy 8 kW i mocy 15 kW Silnik z magnesami trwałymi o dużej mocy 10 kW

Szczegóły Produktu

Miejsce pochodzenia: Chiny

Nazwa handlowa: ENNENG

Orzecznictwo: CE,UL

Numer modelu: PMM

Warunki płatności i wysyłki

Minimalne zamówienie: 1 zestaw

Cena: USD 500-5000/set

Szczegóły pakowania: Zdatne do żeglugi opakowanie

Czas dostawy: 15-120 dni

Zasady płatności: L/C, T/T

Możliwość Supply: 20000 zestawów / rok

Uzyskaj najlepszą cenę
Podkreślić:

Silnik PMSM 8 kW

,

silnik PMSM 15 kW

,

silnik z magnesami trwałymi 10 kW

Nazwa:
Producent silników PMSM
Aktualny:
AC
Materiał:
NdFeB ziem rzadkich
Zakres mocy:
5,5-3000kw
Instalacja:
IMB3 IMB5 IMB35
Praca:
ODM, OEM
Cechy:
Wysoka wydajność, oszczędność energii, niskie koszty utrzymania
Stopień ochrony:
IP54 IP55 IP68
Kontrola:
Bezczujnikowy
Obowiązek:
S1
Nazwa:
Producent silników PMSM
Aktualny:
AC
Materiał:
NdFeB ziem rzadkich
Zakres mocy:
5,5-3000kw
Instalacja:
IMB3 IMB5 IMB35
Praca:
ODM, OEM
Cechy:
Wysoka wydajność, oszczędność energii, niskie koszty utrzymania
Stopień ochrony:
IP54 IP55 IP68
Kontrola:
Bezczujnikowy
Obowiązek:
S1
Sterowanie bezczujnikowe Silnik PMSM o mocy 8 kW i mocy 15 kW Silnik z magnesami trwałymi o dużej mocy 10 kW

Sterowanie bezczujnikowe 3-fazowy silnik PMSM o dużej mocy i niskiej prędkości Producent

Sterowanie bezczujnikowe Silnik PMSM o mocy 8 kW i mocy 15 kW Silnik z magnesami trwałymi o dużej mocy 10 kW 0

 

Co to jest silnik synchroniczny z magnesami trwałymi?

 

Silnik synchroniczny z magnesami trwałymi (PMSM) to rodzaj silnika elektrycznego, który działa za pomocą magnesów trwałych osadzonych w jego wirniku.Jest również czasami określany jako bezszczotkowy silnik prądu przemiennego lub synchroniczny silnik z magnesami trwałymi.

 

W PMSM stojan (stacjonarna część silnika) zawiera szereg cewek, które są zasilane w sekwencji w celu wytworzenia wirującego pola magnetycznego.Wirnik (obrotowa część silnika) zawiera szereg magnesów trwałych, które są przystosowane do wytwarzania pola magnetycznego, które oddziałuje z polem magnetycznym wytwarzanym przez stojan.

 

Gdy dwa pola magnetyczne oddziałują na siebie, wirnik obraca się, wytwarzając energię mechaniczną, którą można wykorzystać do zasilania maszyn lub innych urządzeń.Ponieważ magnesy trwałe w wirniku zapewniają silne, stałe pole magnetyczne, PMSM są bardzo wydajne i wymagają mniej energii do działania niż inne typy silników elektrycznych.

 

PMSM są wykorzystywane w wielu różnych zastosowaniach, w tym w pojazdach elektrycznych, maszynach przemysłowych i urządzeniach gospodarstwa domowego.Są znane ze swojej wysokiej wydajności, niskich wymagań konserwacyjnych i precyzyjnego sterowania, co czyni je popularnym wyborem dla wielu różnych typów systemów.

 

Działanie silnika synchronicznego z magnesami trwałymi:

 

Działanie silnika synchronicznego z magnesami trwałymi jest bardzo proste, szybkie i efektywne w porównaniu z silnikami konwencjonalnymi.Działanie PMSM zależy od wirującego pola magnetycznego stojana i stałego pola magnetycznego wirnika.Magnesy trwałe służą jako wirnik do wytwarzania stałego strumienia magnetycznego oraz działają i blokują się z prędkością synchroniczną.Te typy silników są podobne do bezszczotkowych silników prądu stałego.

 

Grupy wskazów powstają poprzez połączenie ze sobą uzwojeń stojana.Te grupy wskazów są połączone ze sobą, tworząc różne połączenia, takie jak gwiazda, delta oraz podwójne i pojedyncze fazy.Aby zredukować napięcia harmoniczne, uzwojenia powinny być krótko nawinięte względem siebie.

 

Kiedy trójfazowe zasilanie prądem przemiennym jest dostarczane do stojana, wytwarza on wirujące pole magnetyczne, a stałe pole magnetyczne jest indukowane przez magnes stały wirnika.Wirnik ten pracuje synchronicznie z prędkością synchroniczną.Cała praca PMSM zależy od szczeliny powietrznej między stojanem a wirnikiem bez obciążenia.

 

Jeśli szczelina powietrzna jest duża, straty powietrza silnika zostaną zmniejszone.Bieguny pola utworzone przez magnes stały są wyraźne.Silniki synchroniczne z magnesami trwałymi nie są silnikami samoczynnymi.Dlatego konieczne jest elektroniczne sterowanie zmienną częstotliwością stojana.

 

Struktury silnikowe PM

 

Konstrukcje silników PM można podzielić na dwie kategorie: wewnętrzne i powierzchniowe.Każda kategoria ma swój podzbiór kategorii.Powierzchniowy silnik z magnesami trwałymi może mieć magnesy na powierzchni wirnika lub w nim być, aby zwiększyć solidność konstrukcji.Pozycjonowanie i konstrukcja wewnętrznego silnika z magnesami trwałymi mogą się znacznie różnić.Magnesy silnika IPM można wstawić jako duży blok lub naprzemiennie, gdy zbliżają się do rdzenia.Inną metodą jest osadzanie ich we wzorze szprych.

Szczegółowe zdjęcia
Sterowanie bezczujnikowe Silnik PMSM o mocy 8 kW i mocy 15 kW Silnik z magnesami trwałymi o dużej mocy 10 kW 1
Samoczynne wykrywanie a działanie w pętli zamkniętej
 
Ostatnie postępy w technologii napędów umożliwiają standardowym napędom prądu przemiennego „samoczynne wykrywanie” i śledzenie położenia magnesu silnika.System z zamkniętą pętlą zazwyczaj wykorzystuje kanał z-pulse do optymalizacji wydajności.Dzięki pewnym procedurom przemiennik zna dokładną pozycję magnesu silnika, śledząc kanały A/B i korygując błędy w kanale Z.Znajomość dokładnego położenia magnesu pozwala na uzyskanie optymalnego momentu obrotowego, co skutkuje optymalną wydajnością.
 

Różnice między silnikiem z magnesami trwałymi a silnikiem asynchronicznym

 

01. Struktura wirnika

Silnik asynchroniczny: Wirnik składa się z żelaznego rdzenia i uzwojenia, głównie wirników klatkowych i drutowych.Wirnik klatkowy jest odlewany z aluminiowych prętów.Pole magnetyczne pręta aluminiowego przecinającego stojan napędza wirnik.

 

Silnik PMSM: Magnesy trwałe są osadzone w biegunach magnetycznych wirnika i są wprawiane w ruch obrotowy przez wirujące pole magnetyczne generowane w stojanie zgodnie z zasadą, że bieguny magnetyczne tej samej fazy przyciągają różne odpychania.

 

02. Wydajność

Silniki asynchroniczne: muszą pobierać prąd ze wzbudzenia sieci, co powoduje pewną utratę energii, prądu biernego silnika i niskiego współczynnika mocy.

 

Silnik PMSM: Pole magnetyczne jest wytwarzane przez magnesy trwałe, wirnik nie potrzebuje prądu wzbudzającego, a wydajność silnika jest lepsza.

 

03. Objętość i waga

Zastosowanie wysokowydajnych materiałów z magnesami trwałymi sprawia, że ​​pole magnetyczne szczeliny powietrznej silników synchronicznych z magnesami trwałymi jest większe niż w przypadku silników asynchronicznych.Rozmiar i waga są zmniejszone w porównaniu z silnikami asynchronicznymi.Będzie o jeden lub dwa rozmiary mniejsze niż silniki asynchroniczne.

 

04. Prąd rozruchowy silnika

Silnik asynchroniczny: jest uruchamiany bezpośrednio przez energię elektryczną o częstotliwości sieciowej, a prąd rozruchowy jest duży, który może osiągnąć 5 do 7 razy prąd znamionowy, co ma ogromny wpływ na sieć energetyczną w jednej chwili.Duży prąd rozruchowy powoduje wzrost spadku napięcia rezystancji upływowej uzwojenia stojana, a moment rozruchowy jest mały, więc nie można uzyskać rozruchu przy dużym obciążeniu.Nawet jeśli używany jest falownik, można go uruchomić tylko w zakresie znamionowego prądu wyjściowego.

 

Silnik PMSM: jest napędzany przez dedykowany sterownik, który nie spełnia znamionowych wymagań wyjściowych reduktora.Rzeczywisty prąd rozruchowy jest mały, prąd jest stopniowo zwiększany w zależności od obciążenia, a moment rozruchowy jest duży.

 

05. Współczynnik mocy

Silniki asynchroniczne mają niski współczynnik mocy, muszą pochłaniać dużą ilość prądu biernego z sieci energetycznej, duży prąd rozruchowy silników asynchronicznych spowoduje krótkotrwały wpływ na sieć energetyczną, a długotrwałe użytkowanie spowoduje pewne uszkodzenia do urządzeń sieci elektroenergetycznej i transformatorów.Konieczne jest dodanie jednostek kompensacji mocy i wykonanie kompensacji mocy biernej, aby zapewnić jakość sieci elektroenergetycznej i zwiększyć koszty użytkowania urządzeń.

 

W wirniku silnika synchronicznego z magnesami trwałymi nie występuje prąd indukowany, a współczynnik mocy silnika jest wysoki, co poprawia współczynnik jakości sieci elektroenergetycznej i eliminuje konieczność instalowania kompensatora.

 

06. Konserwacja

Konstrukcja silnika asynchronicznego + reduktora będzie generować wibracje, ciepło, wysoką awaryjność, duże zużycie smaru i wysokie koszty konserwacji ręcznej;spowoduje to pewne straty związane z przestojami.

 

Trójfazowy silnik synchroniczny z magnesami trwałymi bezpośrednio napędza sprzęt.Ponieważ reduktor jest wyeliminowany, prędkość wyjściowa silnika jest niska, hałas mechaniczny jest niski, wibracje mechaniczne są małe, a wskaźnik awaryjności jest niski.Cały układ napędowy jest prawie bezobsługowy.

 

Równanie pola elektromagnetycznego i momentu obrotowego

 

W maszynie synchronicznej średnia siła elektromotoryczna indukowana na fazę jest nazywana polem elektromagnetycznym indukującym dynamikę w silniku synchronicznym, strumień wycinany przez każdy przewodnik na obrót wynosi Pϕ Webera

Wtedy czas potrzebny na wykonanie jednego obrotu wynosi 60/N sek

 

Średnią EMF indukowaną na przewodnik można obliczyć za pomocą

 

( PϕN / 60 ) x Zph = ( PϕN / 60 ) x 2Tph

 

Gdzie Tph = Zph / 2

 

Dlatego średni EMF na fazę wynosi,

 

= 4 x ϕ x Tph x PN/120 = 4ϕfTph

Gdzie Tph = nie.Zwojów połączonych szeregowo na fazę

 

ϕ = strumień/biegun w Weberze

 

P = nie.biegunów

 

F= częstotliwość w Hz

 

Zph= nie.Z przewodów połączonych szeregowo na fazę.= Zph/3

 

Równanie EMF zależy od cewek i przewodników na stojanie.W przypadku tego silnika uwzględniono również współczynnik dystrybucji Kd i współczynnik skoku Kp.

 

Stąd E = 4 x ϕ xfx Tph xKd x Kp

 

Równanie momentu obrotowego silnika synchronicznego z magnesami trwałymi jest podane jako

 

T = (3 x Eph x Iph x sinβ) / ωm

 

 

Silniki prądu przemiennego z magnesami trwałymi (PMAC) mają szeroki zakres zastosowań, w tym:

 

Maszyny przemysłowe: Silniki PMAC są wykorzystywane w różnych zastosowaniach maszyn przemysłowych, takich jak pompy, sprężarki, wentylatory i obrabiarki.Oferują wysoką wydajność, dużą gęstość mocy i precyzyjną kontrolę, co czyni je idealnymi do tych zastosowań.

 

Robotyka: Silniki PMAC są stosowane w robotyce i automatyce, gdzie oferują wysoką gęstość momentu obrotowego, precyzyjną kontrolę i wysoką wydajność.Są często stosowane w ramionach robotów, chwytakach i innych systemach sterowania ruchem.

 

Systemy HVAC: Silniki PMAC są stosowane w systemach grzewczych, wentylacyjnych i klimatyzacyjnych (HVAC), gdzie zapewniają wysoką wydajność, precyzyjne sterowanie i niski poziom hałasu.Są one często stosowane w wentylatorach i pompach w tych systemach.

 

Systemy energii odnawialnej: Silniki PMAC są stosowane w systemach energii odnawialnej, takich jak turbiny wiatrowe i urządzenia śledzące energię słoneczną, gdzie oferują wysoką wydajność, dużą gęstość mocy i precyzyjne sterowanie.Są często stosowane w generatorach i systemach śledzenia w tych systemach.

 

Sprzęt medyczny: Silniki PMAC są stosowane w sprzęcie medycznym, takim jak urządzenia do rezonansu magnetycznego, gdzie zapewniają wysoką gęstość momentu obrotowego, precyzyjną kontrolę i niski poziom hałasu.Są one często stosowane w silnikach napędzających ruchome części tych maszyn.

 

SPM kontra IPM

 

Silnik PM można podzielić na dwie główne kategorie: silniki z magnesami trwałymi powierzchniowymi (SPM) i silniki z magnesami trwałymi wewnętrznymi (IPM).Żaden typ konstrukcji silnika nie zawiera prętów wirnika.Oba typy generują strumień magnetyczny przez magnesy trwałe przymocowane do lub wewnątrz wirnika.

Silniki SPM mają magnesy przymocowane do zewnętrznej powierzchni wirnika.Z powodu tego mechanicznego mocowania ich wytrzymałość mechaniczna jest słabsza niż w przypadku silników IPM.Osłabiona wytrzymałość mechaniczna ogranicza maksymalną bezpieczną prędkość mechaniczną silnika.Ponadto silniki te wykazują bardzo ograniczoną istotność magnetyczną (Ld ≈ Lq).Wartości indukcyjności mierzone na zaciskach wirnika są stałe niezależnie od położenia wirnika.Ze względu na bliski jedności współczynnik istotności, konstrukcje silników SPM polegają w znacznym stopniu, jeśli nie całkowicie, na składowej momentu magnetycznego w celu wytworzenia momentu obrotowego.

 

Silniki IPM mają magnes stały osadzony w samym wirniku.W przeciwieństwie do swoich odpowiedników SPM, lokalizacja magnesów trwałych sprawia, że ​​silniki IPM są bardzo solidne mechanicznie i nadają się do pracy z bardzo dużymi prędkościami.Silniki te charakteryzują się również stosunkowo wysokim współczynnikiem istotności magnetycznej (Lq > Ld).Ze względu na swoją istotność magnetyczną silnik IPM ma zdolność generowania momentu obrotowego, wykorzystując zarówno komponenty magnetyczne, jak i reluktancyjne momentu obrotowego silnika.

Osłabienie/wzmocnienie strumienia silników PM

 

Strumień w silniku z magnesami trwałymi jest generowany przez magnesy.Pole strumienia porusza się po określonej ścieżce, którą można wzmocnić lub przeciwstawić.Wzmocnienie lub zintensyfikowanie pola strumienia pozwoli silnikowi tymczasowo zwiększyć generowany moment obrotowy.Sprzeciwienie się polu strumienia spowoduje zanegowanie istniejącego pola magnetycznego silnika.Zmniejszone pole magnetyczne ograniczy wytwarzanie momentu obrotowego, ale zmniejszy napięcie wstecznej siły elektromotorycznej.Zmniejszone napięcie wstecznej siły elektromotorycznej zwalnia napięcie, aby popychać silnik do pracy z wyższymi prędkościami wyjściowymi.Oba rodzaje pracy wymagają dodatkowego prądu silnika.Kierunek prądu silnika wzdłuż osi d, zapewniany przez sterownik silnika, określa pożądany efekt.

 

Kilka drobnych problemów, które można łatwo przeoczyć w przypadku silnika:

 

1. Dlaczego nie można używać silników ogólnych na obszarach płaskowyżu?

Wysokość ma niekorzystny wpływ na wzrost temperatury silnika, koronę silnika (silnik wysokiego napięcia) i komutację silnika prądu stałego.Należy zwrócić uwagę na trzy następujące aspekty:

(1) Im wyższa wysokość, tym wyższy wzrost temperatury silnika i niższa moc wyjściowa.Jednak gdy temperatura spada wraz ze wzrostem wysokości na tyle, aby skompensować wpływ wysokości na wzrost temperatury, znamionowa moc wyjściowa silnika może pozostać niezmieniona;

(2) Należy podjąć środki zapobiegające wyładowaniu koronowemu, gdy silnik wysokonapięciowy jest używany na płaskowyżu;

(3) Wysokość nie jest dobra dla komutacji silnika prądu stałego, dlatego należy zwrócić uwagę na wybór materiałów szczotek węglowych.

 

2. Dlaczego silnik nie nadaje się do pracy z małym obciążeniem?

Gdy silnik pracuje przy małym obciążeniu, spowoduje to:

(1) Współczynnik mocy silnika jest niski;

(2) Sprawność silnika jest niska.

(3) Spowoduje to marnotrawstwo sprzętu i nieekonomiczne działanie.

 

3. Dlaczego silnik nie uruchamia się w zimnym otoczeniu?

Nadmierne używanie silnika w środowisku o niskiej temperaturze spowoduje:

(1) Pęknięcia izolacji silnika;

(2) Smar łożyskowy zamarza;

(3) Proszek lutowniczy złącza drutu jest sproszkowany.

Dlatego silnik powinien być ogrzewany i przechowywany w zimnym otoczeniu, a uzwojenia i łożyska powinny być sprawdzane przed uruchomieniem.

 

4. Dlaczego silnik 60 Hz nie może korzystać z zasilacza 50 Hz?

Gdy silnik jest zaprojektowany, blacha ze stali krzemowej na ogół działa w obszarze nasycenia krzywej magnesowania.Gdy napięcie zasilania jest stałe, zmniejszenie częstotliwości spowoduje wzrost strumienia magnetycznego i prądu wzbudzenia, co spowoduje wzrost prądu silnika i zużycia miedzi, co ostatecznie doprowadzi do wzrostu temperatury silnika.W ciężkich przypadkach silnik może się spalić z powodu przegrzania cewki.

 

5.Miękki start silnika

Miękki start ma ograniczony efekt oszczędzania energii, ale może zmniejszyć wpływ rozruchu na sieć energetyczną, a także może zapewnić płynny rozruch w celu ochrony jednostki silnikowej.Zgodnie z teorią zachowania energii, dzięki dodaniu stosunkowo złożonego obwodu sterującego, miękki start nie tylko nie oszczędza energii, ale także zwiększa jej zużycie.Ale może zmniejszyć prąd rozruchowy obwodu i odgrywać rolę ochronną.