Szczegóły Produktu
Miejsce pochodzenia: Chiny
Nazwa handlowa: ENNENG
Orzecznictwo: CE,UL
Numer modelu: PMM
Warunki płatności i wysyłki
Minimalne zamówienie: 1 zestaw
Cena: USD 500-5000/set
Szczegóły pakowania: Zdatne do żeglugi opakowanie
Czas dostawy: 15-120 dni
Zasady płatności: L/C, T/T
Możliwość Supply: 20000 zestawów / rok
Nazwa: |
Elektryczny silnik magnetyczny |
Aktualny: |
AC |
Materiał: |
NdFeB ziem rzadkich |
Zakres mocy: |
5,5-3000kw |
Polacy: |
2,4,6,8,10 |
Napięcie: |
380v, 660v, 1140v, 3300v, 6kv, 10kv |
Cechy: |
Napęd bezpośredni do dużych obciążeń |
Typ: |
IPMSM |
Mieszkania: |
Żeliwo |
Praca: |
OEM, ODM |
Nazwa: |
Elektryczny silnik magnetyczny |
Aktualny: |
AC |
Materiał: |
NdFeB ziem rzadkich |
Zakres mocy: |
5,5-3000kw |
Polacy: |
2,4,6,8,10 |
Napięcie: |
380v, 660v, 1140v, 3300v, 6kv, 10kv |
Cechy: |
Napęd bezpośredni do dużych obciążeń |
Typ: |
IPMSM |
Mieszkania: |
Żeliwo |
Praca: |
OEM, ODM |
OEM ODM Service Heavy Duty Silnik z magnesami trwałymi z napędem bezpośrednim
Co to jest silnik synchroniczny z magnesami trwałymi?
Silnik synchroniczny z magnesami trwałymi (PMSM) to silnik synchroniczny prądu przemiennego, którego wzbudzenie pola jest zapewniane przez magnesy trwałe i ma sinusoidalny przebieg wstecznego pola elektromagnetycznego.PMSM to skrzyżowanie silnika indukcyjnego i bezszczotkowego silnika prądu stałego.Podobnie jak bezszczotkowy silnik prądu stałego, ma wirnik z magnesami trwałymi i uzwojenia na stojanie.Jednak struktura stojana z uzwojeniami skonstruowanymi w celu wytworzenia sinusoidalnej gęstości strumienia w szczelinie powietrznej maszyny przypomina silnik indukcyjny.Jego gęstość mocy jest wyższa niż w silnikach indukcyjnych o tych samych wartościach znamionowych, ponieważ nie ma mocy stojana przeznaczonej do wytwarzania pola magnetycznego.
Dzięki magnesom trwałym PMSM może generować moment obrotowy przy zerowej prędkości, do działania wymaga sterowanego cyfrowo falownika.PMSM są zwykle używane w wysokowydajnych i wydajnych napędach silnikowych.Wysokowydajne sterowanie silnikiem charakteryzuje się płynnymi obrotami w całym zakresie prędkości silnika, pełną kontrolą momentu obrotowego przy zerowej prędkości oraz szybkim przyspieszaniem i zwalnianiem.
Aby osiągnąć taką kontrolę, w PMSM stosuje się techniki sterowania wektorowego.Techniki sterowania wektorowego są zwykle określane również jako sterowanie zorientowane na pole (FOC).Podstawową ideą algorytmu sterowania wektorowego jest rozłożenie prądu stojana na część wytwarzającą pole magnetyczne i część wytwarzającą moment obrotowy.Oba komponenty mogą być sterowane oddzielnie po rozłożeniu.
Działanie silnika synchronicznego z magnesami trwałymi
Działanie silnika synchronicznego z magnesami trwałymi jest bardzo proste, szybkie i efektywne w porównaniu z silnikami konwencjonalnymi.Działanie PMSM zależy od wirującego pola magnetycznego stojana i stałego pola magnetycznego wirnika.Magnesy trwałe służą jako wirnik do wytwarzania stałego strumienia magnetycznego oraz działają i blokują się z prędkością synchroniczną.Te typy silników są podobne do bezszczotkowych silników prądu stałego.
Grupy wskazów powstają poprzez połączenie ze sobą uzwojeń stojana.Te grupy wskazów są połączone ze sobą, tworząc różne połączenia, takie jak gwiazda, delta oraz podwójne i pojedyncze fazy.Aby zredukować napięcia harmoniczne, uzwojenia powinny być krótko nawinięte względem siebie.
Kiedy trójfazowe zasilanie prądem przemiennym jest dostarczane do stojana, wytwarza on wirujące pole magnetyczne, a stałe pole magnetyczne jest indukowane przez magnes stały wirnika.Wirnik ten pracuje synchronicznie z prędkością synchroniczną.Cała praca PMSM zależy od szczeliny powietrznej między stojanem a wirnikiem bez obciążenia.
Jeśli szczelina powietrzna jest duża, straty powietrza silnika zostaną zmniejszone.Bieguny pola utworzone przez magnes stały są wyraźne.Silniki synchroniczne z magnesami trwałymi nie są silnikami samoczynnymi.Dlatego konieczne jest elektroniczne sterowanie zmienną częstotliwością stojana.
Analiza zasady zalet technicznych silnika z magnesami trwałymi
Zasada działania silnika synchronicznego z magnesami trwałymi jest następująca: w uzwojeniu stojana silnika do prądu trójfazowego, po prądzie przekazującym, utworzy on wirujące pole magnetyczne dla uzwojenia stojana silnika.Ponieważ wirnik jest zainstalowany z magnesem trwałym, biegun magnetyczny magnesu trwałego jest zamocowany, zgodnie z zasadą biegunów magnetycznych tej samej fazy przyciągających różne odpychanie, wirujące pole magnetyczne generowane w stojanie będzie napędzać wirnik do obracania się, obrót prędkość wirnika jest równa prędkości obracającego się bieguna wytwarzanej w stojanie.
Przebieg siły wstecznej:
Back emf jest skrótem od wstecznej siły elektromotorycznej, ale jest również znany jako przeciwelektromotoryczna siła.Zwrotna siła elektromotoryczna to napięcie, które występuje w silnikach elektrycznych, gdy występuje względny ruch między uzwojeniami stojana a polem magnetycznym wirnika.Geometryczne właściwości wirnika określą kształt fali siły wstecznej.Te przebiegi mogą być sinusoidalne, trapezowe, trójkątne lub coś pomiędzy.
Zarówno maszyny indukcyjne, jak i PM generują przebiegi wstecznej siły elektromotorycznej.W maszynie indukcyjnej przebieg wstecznej siły elektromotorycznej zanika, gdy szczątkowe pole wirnika powoli zanika z powodu braku pola stojana.Jednak w przypadku maszyny PM wirnik generuje własne pole magnetyczne.Dlatego napięcie może być indukowane w uzwojeniach stojana, gdy wirnik jest w ruchu.Napięcie wstecznej siły elektromotorycznej będzie rosło liniowo wraz z prędkością i jest kluczowym czynnikiem przy określaniu maksymalnej prędkości roboczej.
Silniki prądu przemiennego z magnesami trwałymi (PMAC) mają szeroki zakres zastosowań, w tym:
Maszyny przemysłowe: Silniki PMAC są wykorzystywane w różnych zastosowaniach maszyn przemysłowych, takich jak pompy, sprężarki, wentylatory i obrabiarki.Oferują wysoką wydajność, dużą gęstość mocy i precyzyjną kontrolę, co czyni je idealnymi do tych zastosowań.
Robotyka: Silniki PMAC są stosowane w robotyce i automatyce, gdzie oferują wysoką gęstość momentu obrotowego, precyzyjną kontrolę i wysoką wydajność.Są często stosowane w ramionach robotów, chwytakach i innych systemach sterowania ruchem.
Systemy HVAC: Silniki PMAC są stosowane w systemach grzewczych, wentylacyjnych i klimatyzacyjnych (HVAC), gdzie zapewniają wysoką wydajność, precyzyjne sterowanie i niski poziom hałasu.Są one często stosowane w wentylatorach i pompach w tych systemach.
Systemy energii odnawialnej: Silniki PMAC są stosowane w systemach energii odnawialnej, takich jak turbiny wiatrowe i urządzenia śledzące energię słoneczną, gdzie oferują wysoką wydajność, dużą gęstość mocy i precyzyjne sterowanie.Są często stosowane w generatorach i systemach śledzenia w tych systemach.
Sprzęt medyczny: Silniki PMAC są stosowane w sprzęcie medycznym, takim jak urządzenia do rezonansu magnetycznego, gdzie zapewniają wysoką gęstość momentu obrotowego, precyzyjną kontrolę i niski poziom hałasu.Są one często stosowane w silnikach napędzających ruchome części tych maszyn.
Silnik PM można podzielić na dwie główne kategorie: silniki z magnesami trwałymi powierzchniowymi (SPM) i silniki z magnesami trwałymi wewnętrznymi (IPM).Żaden typ konstrukcji silnika nie zawiera prętów wirnika.Oba typy generują strumień magnetyczny przez magnesy trwałe przymocowane do lub wewnątrz wirnika.
Silniki SPM mają magnesy przymocowane do zewnętrznej powierzchni wirnika.Z powodu tego mechanicznego mocowania ich wytrzymałość mechaniczna jest słabsza niż w przypadku silników IPM.Osłabiona wytrzymałość mechaniczna ogranicza maksymalną bezpieczną prędkość mechaniczną silnika.Ponadto silniki te wykazują bardzo ograniczoną istotność magnetyczną (Ld ≈ Lq).
Wartości indukcyjności mierzone na zaciskach wirnika są stałe niezależnie od położenia wirnika.Ze względu na bliski jedności współczynnik istotności, konstrukcje silników SPM polegają w znacznym stopniu, jeśli nie całkowicie, na składowej momentu magnetycznego w celu wytworzenia momentu obrotowego.
Silniki IPM mają magnes stały osadzony w samym wirniku.W przeciwieństwie do swoich odpowiedników SPM, lokalizacja magnesów trwałych sprawia, że silniki IPM są bardzo solidne mechanicznie i nadają się do pracy z bardzo dużymi prędkościami.Silniki te charakteryzują się również stosunkowo wysokim współczynnikiem istotności magnetycznej (Lq > Ld).Ze względu na swoją istotność magnetyczną silnik IPM ma zdolność generowania momentu obrotowego, wykorzystując zarówno komponenty magnetyczne, jak i reluktancyjne momentu obrotowego silnika.
Zalety
Mały i lekki
W specjalnej konstrukcji elektromagnetycznej i konstrukcyjnej stosunek objętości do masy jest zmniejszony o 20%, długość całej maszyny jest zmniejszona o 10%, a pełna szybkość gniazd stojana jest zwiększona do 90%.
Wysoce zintegrowany
Silnik i falownik są wysoce zintegrowane, co pozwala uniknąć połączenia obwodu zewnętrznego między silnikiem a falownikiem i poprawia niezawodność produktów systemowych.
Energooszczędny
Wysokowydajny materiał z magnesów trwałych ziem rzadkich, specjalne gniazdo stojana i konstrukcja wirnika sprawiają, że ten silnik jest wydajny do standardu IE4.
Niestandardowy projekt
Indywidualne projektowanie i produkcja, dedykowane do maszyn specjalnych, ograniczają zbędne funkcje i marże projektowe oraz minimalizują koszty.
Niskie wibracje i hałas
Silnik jest napędzany bezpośrednio, hałas i wibracje sprzętu są niewielkie, a wpływ na środowisko pracy na budowie jest zmniejszony.
Bezobsługowy
Brak szybkoobrotowych części przekładni, brak konieczności regularnej wymiany smaru przekładniowego i prawdziwie bezobsługowy sprzęt.
Samoczynne wykrywanie a działanie w pętli zamkniętej
Ostatnie postępy w technologii napędów umożliwiają standardowym napędom prądu przemiennego „samoczynne wykrywanie” i śledzenie położenia magnesu silnika.System z zamkniętą pętlą zazwyczaj wykorzystuje kanał z-pulse do optymalizacji wydajności.Dzięki pewnym procedurom przemiennik zna dokładną pozycję magnesu silnika, śledząc kanały A/B i korygując błędy w kanale Z.Znajomość dokładnego położenia magnesu pozwala na uzyskanie optymalnego momentu obrotowego, co skutkuje optymalną wydajnością.
Osłabienie/wzmocnienie strumienia silników PM
Strumień w silniku z magnesami trwałymi jest generowany przez magnesy.Pole strumienia porusza się po określonej ścieżce, którą można wzmocnić lub przeciwstawić.Wzmocnienie lub zintensyfikowanie pola strumienia pozwoli silnikowi tymczasowo zwiększyć generowany moment obrotowy.Sprzeciwienie się polu strumienia spowoduje zanegowanie istniejącego pola magnetycznego silnika.Zmniejszone pole magnetyczne ograniczy wytwarzanie momentu obrotowego, ale zmniejszy napięcie wstecznej siły elektromotorycznej.Zmniejszone napięcie wstecznej siły elektromotorycznej zwalnia napięcie, aby popychać silnik do pracy z wyższymi prędkościami wyjściowymi.Oba rodzaje pracy wymagają dodatkowego prądu silnika.Kierunek prądu silnika wzdłuż osi d, zapewniany przez sterownik silnika, określa pożądany efekt.
Jakie aplikacje wykorzystują silniki PMSM?
Silniki synchroniczne z magnesami trwałymi mają zalety prostej konstrukcji, niewielkich rozmiarów, wysokiej wydajności i wysokiego współczynnika mocy.Jest szeroko stosowany w przemyśle metalurgicznym (zakłady żelaza i spiekalnia itp.), przemyśle ceramicznym (młyn kulowy), przemyśle gumowym (mikser wewnętrzny), przemyśle naftowym (jednostka pompująca), przemyśle włókienniczym (maszyna do podwójnego skręcania, rama przędzalnicza ) i inne gałęzie przemysłu w silnikach średniego i niskiego napięcia.
Dlaczego warto wybrać silnik IPM zamiast SPM?
1. Wysoki moment obrotowy uzyskuje się przez zastosowanie momentu reluktancyjnego jako dodatku do momentu magnetycznego.
2. Silniki IPM zużywają do 30% mniej energii w porównaniu z konwencjonalnymi silnikami elektrycznymi.
3. Zwiększone bezpieczeństwo mechaniczne, ponieważ w przeciwieństwie do SPM magnes nie odłącza się pod wpływem siły odśrodkowej.
4. Może reagować na szybkie obroty silnika, kontrolując dwa rodzaje momentu obrotowego za pomocą sterowania wektorowego.