logo
Wyślij wiadomość
QINGDAO ENNENG MOTOR CO.,LTD.
produkty
produkty
Dom > produkty > Silnik PMAC > Wielobiegunowy silnik PM

Wielobiegunowy silnik PM

Szczegóły Produktu

Miejsce pochodzenia: Chiny

Nazwa handlowa: ENNENG

Orzecznictwo: CE,UL

Numer modelu: PMM

Warunki płatności i wysyłki

Minimalne zamówienie: 1 zestaw

Cena: USD 500-5000/set

Szczegóły pakowania: Zdatne do żeglugi opakowanie

Czas dostawy: 15-120 dni

Zasady płatności: L/C, T/T

Możliwość Supply: 20000 zestawów / rok

Uzyskaj najlepszą cenę
Podkreślić:

Wielobiegunowy silnik PM

,

silnik PM z naturalnym chłodzeniem

,

silnik PM 380 V

Nazwa:
Cena silnika PMAC
Aktualny:
AC
Materiał:
NdFeB ziem rzadkich
Zakres mocy:
5,5-3000kw
Napięcie:
380v, 660v, 1140v, 3300v, 6kv, 10kv
Mieszkania:
Żeliwo
Stopień wydajności:
IE5
Instalacja:
IMB3, IMB5, IMB35
Chłodzenie:
Naturalne chłodzenie
Funkcja:
Wielobiegunowy
Nazwa:
Cena silnika PMAC
Aktualny:
AC
Materiał:
NdFeB ziem rzadkich
Zakres mocy:
5,5-3000kw
Napięcie:
380v, 660v, 1140v, 3300v, 6kv, 10kv
Mieszkania:
Żeliwo
Stopień wydajności:
IE5
Instalacja:
IMB3, IMB5, IMB35
Chłodzenie:
Naturalne chłodzenie
Funkcja:
Wielobiegunowy
Wielobiegunowy silnik PM

Wysoka niezawodność Wielobiegunowy silnik ziem rzadkich NdFeB PMAC Cena silnika

 

Co to jest silnik synchroniczny z magnesami trwałymi?

 

Silnik PM to silnik prądu przemiennego, który wykorzystuje magnesy osadzone lub przymocowane do powierzchni wirnika silnika.Magnesy są używane do generowania stałego strumienia silnika zamiast wymagania, aby pole stojana generowało go poprzez połączenie z wirnikiem, jak ma to miejsce w przypadku silnika indukcyjnego.

 

Analiza zasady zalet technicznych silnika z magnesami trwałymi

 

Zasada działania silnika synchronicznego z magnesami trwałymi jest następująca: w uzwojeniu stojana silnika do prądu trójfazowego, po prądzie przekazującym, utworzy on wirujące pole magnetyczne dla uzwojenia stojana silnika.Ponieważ wirnik jest zainstalowany z magnesem trwałym, biegun magnetyczny magnesu stałego jest zamocowany, zgodnie z zasadą biegunów magnetycznych tej samej fazy przyciągających różne odpychanie, wirujące pole magnetyczne generowane w stojanie będzie napędzać wirnik do obracania się, obrót prędkość wirnika jest równa prędkości obracającego się bieguna wytwarzanej w stojanie.

Wielobiegunowy silnik PM 0

 

Dzięki zastosowaniu magnesów trwałych do wytwarzania pól magnetycznych proces wirnika jest dojrzały, niezawodny i elastyczny pod względem wielkości, a projektowana moc może wynosić od kilkudziesięciu watów do megawatów.Jednocześnie zwiększając lub zmniejszając liczbę par magnesów trwałych wirnika, łatwiej jest zmienić liczbę biegunów silnika, co powoduje poszerzenie zakresu prędkości obrotowych silników synchronicznych z magnesami trwałymi.W przypadku wielobiegunowych wirników z magnesami trwałymi prędkość znamionowa może wynosić zaledwie jedną cyfrę, co jest trudne do osiągnięcia w przypadku zwykłych silników asynchronicznych.

 

Szczególnie w środowisku aplikacji o małej prędkości i dużej mocy, silnik synchroniczny z magnesami trwałymi może być napędzany bezpośrednio przez konstrukcję wielobiegunową przy niskiej prędkości, w porównaniu ze zwykłym silnikiem plus reduktor, można podkreślić zalety silnika synchronicznego z magnesami trwałymi .

Wielobiegunowy silnik PM 1

 

Szczegółowe zdjęcia
 
Wielobiegunowy silnik PM 2
Przyjęto wysokowydajny magnes trwały NdFeB, bez strat wzbudzenia.Specjalna konstrukcja struktury wirnika znacznie zmniejszyła straty żelaza i straty zbłąkane.Sprawność silnika jest powyżej standardu IE4, w porównaniu z trójfazowym silnikiem asynchronicznym wydajność poprawia się o 5-10%, a współczynnik mocy zwiększa się o 10-15%.
 
Wysoka sprawność i wysoki współczynnik mocy mogą być utrzymane w zakresie obciążenia od 20% do 120%.Współczynnik mocy może wynosić 1, podczas gdy trójfazowy silnik asynchroniczny może osiągnąć tylko 0,86, skutecznie zmniejsza straty okablowania i poprawia stopień wykorzystania sieci energetycznej.Oszczędność energii jest bardziej znacząca przy niewielkim obciążeniu.
 

Silniki prądu przemiennego z magnesami trwałymi (PMAC) mają szeroki zakres zastosowań, w tym:

 

Maszyny przemysłowe: Silniki PMAC są wykorzystywane w różnych zastosowaniach maszyn przemysłowych, takich jak pompy, sprężarki, wentylatory i obrabiarki.Oferują wysoką wydajność, dużą gęstość mocy i precyzyjną kontrolę, co czyni je idealnymi do tych zastosowań.

 

Robotyka: Silniki PMAC są stosowane w robotyce i automatyce, gdzie oferują wysoką gęstość momentu obrotowego, precyzyjną kontrolę i wysoką wydajność.Są często stosowane w ramionach robotów, chwytakach i innych systemach sterowania ruchem.

 

Systemy HVAC: Silniki PMAC są stosowane w systemach grzewczych, wentylacyjnych i klimatyzacyjnych (HVAC), gdzie zapewniają wysoką wydajność, precyzyjne sterowanie i niski poziom hałasu.Są one często stosowane w wentylatorach i pompach w tych systemach.

 

Systemy energii odnawialnej: Silniki PMAC są stosowane w systemach energii odnawialnej, takich jak turbiny wiatrowe i urządzenia śledzące energię słoneczną, gdzie oferują wysoką wydajność, dużą gęstość mocy i precyzyjne sterowanie.Są często stosowane w generatorach i systemach śledzenia w tych systemach.

 

SPM kontra IPM


Silnik PM można podzielić na dwie główne kategorie: silniki z magnesami trwałymi powierzchniowymi (SPM) i silniki z magnesami trwałymi wewnętrznymi (IPM).Żaden typ konstrukcji silnika nie zawiera prętów wirnika.Oba typy generują strumień magnetyczny przez magnesy trwałe przymocowane do lub wewnątrz wirnika.

 

Silniki SPM mają magnesy przymocowane do zewnętrznej powierzchni wirnika.Z powodu tego mechanicznego mocowania ich wytrzymałość mechaniczna jest słabsza niż w przypadku silników IPM.Osłabiona wytrzymałość mechaniczna ogranicza maksymalną bezpieczną prędkość mechaniczną silnika.Ponadto silniki te wykazują bardzo ograniczoną istotność magnetyczną (Ld ≈ Lq).Wartości indukcyjności mierzone na zaciskach wirnika są stałe niezależnie od położenia wirnika.Ze względu na bliski jedności współczynnik istotności, konstrukcje silników SPM polegają w znacznym stopniu, jeśli nie całkowicie, na składowej momentu magnetycznego w celu wytworzenia momentu obrotowego.

 

Silniki IPM mają magnes stały osadzony w samym wirniku.W przeciwieństwie do swoich odpowiedników SPM, lokalizacja magnesów trwałych sprawia, że ​​silniki IPM są bardzo solidne mechanicznie i nadają się do pracy z bardzo dużymi prędkościami.Silniki te charakteryzują się również stosunkowo wysokim współczynnikiem istotności magnetycznej (Lq > Ld).Ze względu na swoją istotność magnetyczną silnik IPM ma zdolność generowania momentu obrotowego, wykorzystując zarówno komponenty magnetyczne, jak i reluktancyjne momentu obrotowego silnika.

 

Struktury silnikowe PM
Konstrukcje silników PM można podzielić na dwie kategorie: wewnętrzne i powierzchniowe.Każda kategoria ma swój podzbiór kategorii.Powierzchniowy silnik z magnesami trwałymi może mieć magnesy na powierzchni wirnika lub w nim być, aby zwiększyć solidność konstrukcji.Pozycjonowanie i konstrukcja wewnętrznego silnika z magnesami trwałymi mogą się znacznie różnić.Magnesy silnika IPM można wstawić jako duży blok lub naprzemiennie, gdy zbliżają się do rdzenia.Inną metodą jest osadzanie ich we wzorze szprych.

 

Zmiana indukcyjności silnika PM z obciążeniem
Tylko tyle strumienia można połączyć z kawałkiem żelaza, aby wytworzyć moment obrotowy.W końcu żelazo nasyci się i nie będzie już pozwalać na łączenie strumienia.Rezultatem jest zmniejszenie indukcyjności ścieżki pokonanej przez pole strumienia.W maszynie PM wartości indukcyjności osi d i osi q zmniejszają się wraz ze wzrostem prądu obciążenia.

 

Indukcyjności osi d i q silnika SPM są prawie identyczne.Ponieważ magnes znajduje się na zewnątrz wirnika, indukcyjność osi q będzie spadać z taką samą szybkością, jak indukcyjność osi d.Jednak indukcyjność silnika IPM zmniejszy się inaczej.Ponownie, indukcyjność osi d jest naturalnie niższa, ponieważ magnes znajduje się na ścieżce strumienia i nie generuje właściwości indukcyjnych.Dlatego na osi d jest mniej żelaza do nasycenia, co skutkuje znacznie mniejszą redukcją strumienia w stosunku do osi q.

 

Rodzaje magnesów silnika PM

Istnieje kilka rodzajów materiałów z magnesami trwałymi stosowanych obecnie w silnikach elektrycznych.Każdy rodzaj metalu ma swoje zalety i wady.

 

Główne cechy

 

1. Łatwy do zmiany
Ten sam rozmiar instalacji co silnik asynchroniczny. Ze względu na ten sam numer gniazda silnika z silnikiem asynchronicznym (moc wyjściowa <315 kW), można go łatwo zmienić.
 
2. Wysoki współczynnik mocy
Zmniejsz pojemność urządzeń odbierających energię.Nie ma wątpliwości co do wysokiej skuteczności.W porównaniu z silnikami asynchronicznymi i standardowymi silnikami synchronicznymi może zmniejszyć aktualną objętość sprzętu ze względu na wysoki współczynnik mocy.
 
3. Regulacja prędkości odpowiadająca wzrostowi
Jest to kontrola wektorowa PG.Nadaje się do drukarki i kompaktora dziurkacza.
 
4. Wysoka wydajność • Oszczędność energii
Sprawność silnika jest równa IE4 (bardzo wysoka wydajność: powyżej klasy GB1)
Uwaga: IE4 to klasa sprawności określona w normie IEC 60034-30.

 

Samoczynne wykrywanie a działanie w pętli zamkniętej

Ostatnie postępy w technologii napędów umożliwiają standardowym napędom prądu przemiennego „samoczynne wykrywanie” i śledzenie położenia magnesu silnika.System z zamkniętą pętlą zazwyczaj wykorzystuje kanał z-pulse do optymalizacji wydajności.Dzięki pewnym procedurom przemiennik zna dokładną pozycję magnesu silnika, śledząc kanały A/B i korygując błędy w kanale Z.Znajomość dokładnego położenia magnesu pozwala na uzyskanie optymalnego momentu obrotowego, co skutkuje optymalną wydajnością.

 

Osłabienie/wzmocnienie strumienia silników PM
Strumień w silniku z magnesami trwałymi jest generowany przez magnesy.Pole strumienia porusza się po określonej ścieżce, którą można wzmocnić lub przeciwstawić.Wzmocnienie lub zintensyfikowanie pola strumienia pozwoli silnikowi tymczasowo zwiększyć generowany moment obrotowy.Sprzeciwienie się polu strumienia spowoduje zanegowanie istniejącego pola magnetycznego silnika.Zmniejszone pole magnetyczne ograniczy wytwarzanie momentu obrotowego, ale zmniejszy napięcie wstecznej siły elektromotorycznej.Zmniejszone napięcie wstecznej siły elektromotorycznej zwalnia napięcie, aby popychać silnik do pracy z wyższymi prędkościami wyjściowymi.Oba rodzaje pracy wymagają dodatkowego prądu silnika.Kierunek prądu silnika wzdłuż osi d, zapewniany przez silnik controller, określa pożądany efekt.

 

Zalety silników z magnesami trwałymi ziem rzadkich

 

Wysoka wydajność:Krzywa sprawności silnika asynchronicznego na ogół spada szybciej poniżej 60% obciążenia znamionowego, a sprawność jest bardzo niska przy niewielkim obciążeniu.Krzywa sprawności silnika z magnesami trwałymi ziem rzadkich jest wysoka i płaska i znajduje się w obszarze wysokiej sprawności przy 20% ~ 120% obciążenia znamionowego.

 

Wysoki współczynnik mocy:Zmierzona wartość współczynnika mocy silnika synchronicznego z magnesami trwałymi ziem rzadkich jest bliska wartości granicznej 1,0.Krzywa współczynnika mocy jest równie wysoka i płaska jak krzywa sprawności.Współczynnik mocy jest wysoki.Kompensacja mocy biernej niskiego napięcia nie jest wymagana, a wydajność systemu dystrybucji energii jest w pełni wykorzystana.

 

Prąd stojana jest mały:Wirnik nie ma prądu wzbudzenia, moc bierna jest zmniejszona, a prąd stojana jest znacznie zmniejszony.W porównaniu z silnikiem asynchronicznym o tej samej mocy, wartość prądu stojana można zmniejszyć o 30% do 50%.Jednocześnie, ponieważ prąd stojana jest znacznie zmniejszony, wzrost temperatury silnika jest zmniejszony, a smar łożyskowy i żywotność łożyska są wydłużone.

 

Wysoki moment obrotowy poza stopniem i moment wciągania:Silniki synchroniczne z magnesami trwałymi ziem rzadkich mają wyższy moment obrotowy poza krokiem i moment wciągania, co sprawia, że ​​silnik ma większą obciążalność i można go płynnie wciągnąć do synchronizacji.

 

 

Jakie aplikacje wykorzystują silniki PMSM?

 

Wysokowydajne silniki synchroniczne z konwersją częstotliwości z magnesami trwałymi są szeroko stosowane we wtryskarkach, sprężarkach powietrza, urządzeniach do produkcji rur, maszynach hydraulicznych, maszynach spożywczych, maszynach do produkcji rur cementowych, wytłaczarkach do tworzyw sztucznych, maszynach do ciągnienia drutu i sprzęcie farmaceutycznym.